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I. Introduction
The problem of imaging of targets in random media or cluttered environments is found in a wide variety of

different applications, including ocean acoustics, medical ultrasound, geophysics, and radar. The solution often requires
separating targets of interest from other scatterers, and compensating for wave speed variations in the medium. The
problem is not usually the lack of data, but too much data, specifically the lack of a useful organizing principle for
the data. The difficult part is separating the meaningful data from the remainder. It would therefore be most helpful
if there were some means for skipping over those parts of the data that we do not really want to image very much,
and looking at those parts (targets) that do interest us. This sounds challenging (maybe even impossible), but recent
developments in acoustics make it clear that certain very limited imaging goals are achievable with much smaller data
sets than are traditionally needed in, for example, seismic array processing [1]. Early versions of this new method
have been given the names of “time-reversal acoustics” or “time-reversal mirrors,” and have been developed most
extensively by the French ultrasonics group led by Fink ([2], [3]])

Although these new ideas about target localization and imaging first arose in acoustics applications, the basic ideas
are all wave-based and, therefore, pertinent with only a few changes to electromagnetic imaging modalities as well.
Empirical approaches to time-reversal use specialized arrays that can both transmit and record arbitrary waveforms.
These are available in acoustics but are difficult to build for typical radar frequencies. However, for imaging of targets,
another approach using the same fundamental ideas as those behind the methods of empirical time-reversal is cheaper
(because it requires less specialized hardware) and more effective. Instead of time-reversing and iterating the signals in
the scattering process, we can map out once and for all the full response (or multistatic data) matrix. This matrix is the
set of impulse responses for each combination of transmit and receive elements of the array. By Fourier transforming
the elements of this temporal matrix, we obtain a frequency indexed set of complex but symmetric matrices. For each
of these matrices we can perform the well-known singular value decomposition (SVD). Thus, we find all the desired
information (all the singular vectors and singular values) simultaneously for each frequency. The singular vectors
are the eigenvectors of the time-reversal operator (TRO) and the singular values are the square roots of the TRO
eigenvalues. These can be used to estimate target location, reject clutter, or classify targets.

The response matrix method can be used when it is impractical to record the entire time-trace of the received signals.
There are, however, two important issues especially pertinent to EM applications that need to be investigated. First,
in acoustics the signals are pressure waves and do not carry polarization information, whereas in electromagnetics
the signals are always transversely polarized, and can therefore carry information about either of two states of
polarization. So there should be some additional information present in fully polarimetric radar data that is not
available in acoustic data. Second, time-reversal imaging has been applied mostly to relatively small objects, often
treated as point scatterers. Chambers and Gautesen [4] found that individual scatterers can have multiple eigenvalues
and eigenvectors associated with them, when more than one of the physical properties of the objects show contrast
with those of the surroundings (for example, bulk modulus and density for acoustics applications). This feature may
be exploited for target discrimination and identification.

Recently, Tortel, Micolau, and Saillard [5] analyzed the electromagnetic time-reversal operator for sources and
receivers in a ring surrounding a number of dielectric and conducting spheres and cylinders. We analyze the TRO
for a planar array and show that for point scatterers, there can be up to six eigenvalues and eigenvectors of the
time-reversal operator associated with each scatterer. These are associated with various configurations of the induced
dipole moments in the scatterer, and depend not only on the geometry but also the polarization capability of the
array.

II. Derivation and decomposition of the multistatic data matrix
Consider an array of N short, crossed-dipole elements lying in the plane z = −za (see Fig. 1), where za is the

distance between the plane and the sphere. The position of the nth element is given by the vector rn = (ξn, ηn,−za).



Fig. 1. Geometry of the array and sphere. Crossed dipole elements m and n are shown at distances rm and rn, respectively, from the
sphere. Distance from sphere to plane of the array is za.

Following Krauss [6], the electric field at the field point r radiated from the nth element is given by

E(i)
n (Rn) =

ikeikRn

4πε0cRn
R̂n

×
[
R̂n × (dHIH

n êx + dV IV
n êy)

]
,

(1)

where c is the speed of light, k is the wave vector, ε0 is the electrical permittivity, and Rn = r − rn. The scalar
Rn is the magnitude of the vector Rn and R̂n is the unit vector in the direction of Rn. The horizontal and vertical
dipoles in the element (lengths dH and dV ) are driven by the currents IH

n and IV
n respectively. The horizontal dipole

is oriented parallel to the x axis (unit vector êx) and the vertical dipole is oriented parallel to the y axis (unit vector
êy).

Let a sphere of radius a � za be placed in front of the array, centered at the origin. The field incident on the sphere
from the nth element can be approximated as a plane wave coming from the direction of the element. For a sphere
much smaller than a wavelength, the field scattered from an incident plane wave is given to leading order (O((ka)3))
[7] by

E(s)(r) = −k2eikr

r
[̂r × (m + r̂ × p)] , (2)

where p is the induced electric dipole moment and m is the induced magnetic dipole moment generated by the incident
field. The moments are related to the incident field E(i)

n evaluated at the position of the sphere r = 0 (Rn = −rn):

m = −m0r̂n ×E(i)
n (−rn) , p = p0E(i)

n (−rn) , (3)

where p0 = a3(ñ2 − 1)/(ñ2 + 2), ñ2 = ε + i4πσ/ω, and m0 = −iBm
1 /k3 (see [7]). The various factors are ε the relative

permitivity of the sphere, σ the conductivity, ω the frequency, and Bm
1 is a quantity defined in reference [7] that

determines the strength of the magnetic moment. When the conductivity of the sphere is small, Bm
1 can be neglected

to leading order, so then the magnetic moment m does not contribute to the scattered field. In general, p0 and m0

are complex and can be represented in terms of magnitude and phase: p0 = |p0|eiθp , m0 = |m0|eiθm .
The scattered field induces voltages on each dipole of the array elements. From reference [8], the voltages induced

on the dipoles of the mth element can be expressed as

V H
m = −dH [̂rm × (r̂m × êx)] ·E(s)(rm) , (4)

V V
m = −dV [̂rm × (r̂m × êy)] ·E(s)(rm) .

Combining these with the previous expressions for the incident field (1) and scattered field (2) we can derive an
expression for the coupling between the voltages in the mth receiving element and the currents in the nth transmitting
element generated from the scattering by the sphere. Assembling the expressions for all N elements gives a simple
matrix expression relating the transmit currents to the receive voltages for all the dipole elements:

V = T I , (5)

where V and I are vectors of length 2N representing voltages and currents respectively, and T is a 2N × 2N matrix
representing the coupling.



Fig. 2. Six singular values for a linear array and a conducting sphere as a function of normalized distance from the array, 2za/w. The
singular values are scaled by za/d2

H for λ1, λ3, and λ4 (heavy lines); and by za/d2
V for λ2, λ5, and λ6 (light lines).

The eigenvalues and eigenvectors for the time-reversal operator are obtained by calculating the singular value
decomposition of the T matrix:

TΦ = ΛΦ∗ , (6)

where the singular values Λ are real and non-negative. The singular vectors Φ are also the eigenvectors of the TRO,
and the squares of the singular values are the eigenvalues of the TRO. A careful examination of the elements of the
T matrix reveals that it can be expressed as a sum of six terms, each of which is an outer product of vectors:

T = −eiθp
(
g1 gT

1 + g2 gT
2 + g3 gT

3

)

+ eiθm
(
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6

)
,

(7)

where θp and θm are the phases of the induced electric and magnetic dipoles respectively. The first three terms are
generated by the induced electric dipole, while the last three come from the induced magnetic dipole. The three terms
for each dipole correspond to the three orthogonal orientations of the dipole moment in three dimensions. All terms
contribute if the sphere is a good conductor, otherwise only the electric dipole terms are significant. This factorization
means that rank of the T matrix (and the number of singular values) is no greater than six (three for nonconductive
spheres).

Figure 2 shows the six singular values associated with a small conducting sphere as a function of range from a
fully polarimatric linear array. These are two groups: one group associated with horizontal polarization (λ1, λ3, and
λ4), and another with vertical polarization (λ2, λ5, and λ6). An array limited to only one polarization (horizontal or
vertical) would generate only one of these groups. The three singular values in each group behave similarly in the near
field (2za/w < 1), staying within two decades of one another, but fall off at different rates in the far field (2za/w > 1).
Only the largest singular value for each polarization group (λ1 and λ2) would likely be observed for spheres in the
far field. Note that the largest singular values fall off at rates consistent with backscatter from a point target (z−2

a ).
Similar behavior has been calculated for dielectric spheres and for a circular planar array. In the latter case, the
singular values are no longer separable into groups associated with horizontal and vertical polarization. Additional
examples using both linear and circular arrays will be shown in the accompanying presentation.

III. Conclusion
We have derived an analytic expression for the time reveral operator (TRO) for the case of a planar array of

crossed dipole elements illuminating a small sphere. The eigenvalues and eigenvectors of the TRO can be determined
by performing a singular value decomposition (SVD) on the multistatic data matrix (response matrix) of the array.
The eigenvalues of the TRO are the squares of the singular values, and the eigenvectors are identical to the singular
vectors. We have shown that the maximum number of singular vectors associated with the sphere is equal to the
number of orthogonal orientations of the dipole moments induced in the sphere when irradiated by the array. For a
non-conducting sphere, only the electric dipole moment, with three possible orientations, contributes to the scattered
field, so the number of possible singular values is three. For a conducting sphere, the induced magnetic dipole also



contributes to the scattered field, so the number of possible singular values associated with the sphere is six, three for
the electric dipole and three for the magnetic dipole. The actual number of singular values may be less, depending
on the array configuration, polarization, and the location of the sphere. The number of orthogonal orientations of the
dipole moments represent degrees of freedom in the scattering response of the sphere.

The singular values as a function of range were calculated for the examples of a linear array and a circular array
when the sphere is positioned along an axis of symmetry of the array. In each case, the singular values behaved
similarly when the sphere was in the near field of the array, but decayed at different rates for a sphere in the far field.
Only the slowest decaying singular values would likely be observable for a sphere in the far field.
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